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Abstract—A novel technique for automated filter tuning is
introduced. The filter to be tuned is represented by a generalized
filter low-pass prototype model rather than a specialized equiv-
alent network. The prototype model is based on the minimum
number of characteristic filter parameters to represent the filter
transfer function correctly. The parameter values are found from
a gradient-based parameter-extraction process using measured

-parameters. Automated filter tuning is performed as a two-step
procedure. First, the parameter sensitivities with respect to the
tuning elements are determined by a series of -parameter
measurements. Second, the parameter values of the filter are
compared to the values of the ideal filter prototype found from
a filter synthesis, thus yielding the optimal screw positions. This
novel tuning technique has been tested successfully with direct
coupled three-resonator and cross-coupled four- and six-resonator
filters.

Index Terms—Automated tuning, CAD, gradient methods, pa-
rameter estimation, sensitivity analysis, waveguide filter.

I. INTRODUCTION

L OW-COST and high- microwave components are key
components of many telecommunication systems. Large-

volume production and quick turnaround time have become im-
portant aspects in the decision as to what kind of filter structures
are most suitable to satisfy a range of specifications. In this con-
text, modular filter-design techniques show certain advantages
since they allow to pre-design a range of filter modules that can
be assembled quickly according to the customer’s need in terms
of bandwidth, insertion loss, and slope selectivity. A drawback
of this approach is, however, that the assembled filters must be
fine tuned on the production floor, which, depending on the sen-
sitivity of the filter characteristics, can be a labor-intensive and,
thus, an expensive task. Therefore, automatic tuning on the pro-
duction floor is attractive to speed up turnaround time and lower
the costs.

Automatic tuning of filters has been proposed by several au-
thors in the past with varying success. In [1], filter tuning in the
time domain is described. However, for this method to work,
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an optimum filter template is needed and an experienced oper-
ator is still required to tune the filter. In [2], the authors pro-
pose a diagnosis and tuning method based on model-based pa-
rameter estimation and multilevel optimization. With this ap-
proach, it is only possible to optimize the locations of the re-
flection and transmission zeros and not the filter ripple or re-
turn loss, respectively. Moreover, diagnosis and tuning of a real
(measured) filter has not been investigated in that paper. In [3],
an optimization method for the identification of filter network
parameters and network sensitivities is proposed. However, in
this paper, only the simulated amplitude and delay response of
coupled cavity filters is given. Simulated filter structures are
optimized in [4]. To accelerate the optimization, the character-
istic filter parameters of a fine model (electromagnetic (EM)
simulation of a filter) are extracted and mapped onto a coarse
model (circuit model). The optimization is then mainly done
on the coarse model. There are two obvious drawbacks with
this method: first, an intermediate step of finding a valid coarse
model is required; second, as this model is only an approxi-
mation of the fine model, optimization is not done on the real
model, which requires continuous updating of the coarse model
during optimization. Moreover, the uniqueness of the coarse
model is not guaranteed, and local minima can occur during op-
timization.

In the present approach [5], there is no need for an equiva-
lent network since all characteristic parameters and sensitivities
of measured filters can be directly related to the filter prototype
parameters. This is a distinctly different approach to an earlier
paper by Harscheret al.[6], in which an equivalent network rep-
resentation of a waveguide filter was mapped onto the measured
filter response using gradient optimization. In [6], only magni-
tudes of -parameters were used.

The goal of automatic filter tuning is to find the optimum
position of tuning elements (e.g., tuning screws) to satisfy
given filter specifications. From the filter specifications and
based on standard filter synthesis, which provides the ideal
filter parameters (resonant frequencies, couplings between
resonators, input/ouput couplings), a prototype response can
be generated (see Section IV). For a de-tuned filter (basis
position), the corresponding characteristic filter parameters can
be extracted from -parameter measurements. This is done by
gradient optimization using analytically calculated gradients
(see Section V). A comparison between the ideal prototype
values and the prototype values of the measured filter response
directly shows the difference between the optimum element
values and element values represented by the measured filter
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in basis position. The remaining step is then to change the
extracted element values to match the ideal prototype element
values. For waveguide filters, this is typically done by tuning
screws for which the number of turns per unit of tuning
element value must be determined. Although tuning screws
mainly affect the parameter associated with the screw (e.g.,
resonant frequency or coupling coefficient), other parameters
(e.g., resonant frequency of neighboring resonators) may also
be affected. Thus, it is necessary to extract the sensitivity
of each tuning screw with respect to the overall prototype
model (see Section VI). For this purpose, a series of additional

-parameter measurements is performed with one screw turned
at a time. Each time, the prototype parameters are extracted by
gradient optimization to give one additional parameter set for
each screw. Comparing the parameter set extracted from the
filter basis position with those from each screw turn provides
the sensitivities of the element values. Knowing the prototype
network elements for the de-tuned filter, as well as for the ideal
filter response and the sensitivities of the tuning screws, one
can extract the optimum set of tuning screw positions.

To summarize, this novel approach offers the following ad-
vantages.

• The method is general and can be used for filters with
arbitrary topology, number of resonators, and other means
of tuning (e.g., varactor diodes and corresponding driving
voltages).

• No EM simulator or equivalent network model is needed.
• The effects of all characteristic parameters (input/output

coupling, resonant frequencies, resonator losses, and cou-
plings between resonators) including manufacturing toler-
ances are accounted for. The latter is not if only EM sim-
ulation is used.

• The prototype model reproduces the measured-parame-
ters in the complex plane (not only magnitudes) and, thus,
is very accurate.

• The parameter sensitivities of a measured filter are ex-
tracted. The so-obtained relationship between changes of
network parameters and tuning screw positions allows au-
tomatic tuning of filters.

• Analytically calculated gradients of cost functions are
used to accelerate the parameter-extraction process, [5].

• The process is very fast, no matrix inversions, matrix ro-
tations, etc., are needed.

The present approach has first been proposed in [5] to tune
a direct-coupled three-pole resonator filter. In this paper, the
method is extended to filters with a higher number of resonators
and cross couplings.

II. TEST SETUP

The following three different filter topologies are used to test
the tuning concept:

• threee-resonator filter, direct coupled [5];
• four-resonator filter, cross coupling between resonators

1–4;
• six-resonator filter, cross coupling between resonators

2–5.

Fig. 1. Three-pole reentrant resonator filter.

Fig. 2. Test setup.

Fig. 1 shows the three-resonator filter, which consists of
three reentrant cavities with square diameter. resonators are
mounted in each cavity. The structure is capacitively coupled
by probes at the input and output. Five tuning screws allow the
filter characteristics to be changed. Screws 1, 3, and 5 change
the resonant frequency of each resonator. Screws 2 and 4
change the coupling between two adjacent resonators, affecting
the bandwidth of the response. The four- and six-resonator
filters are folded structures employing the same resonators as
the three-resonator filter.

The test setup (Fig. 2) consist of:

• personal computer (PC) with general-purpose interface
bus (GPIB) interface;

• vector network analyzer (VNA);
• dc motors with fixture;
• control box for dc motors;
• microwave filter (e.g., three-pole reentrant resonator

filter).
The tuning screws are turned by dc motors. They are mounted

on the filter by a special test fixture. The-parameters of the
filter are measured with a VNA (HP 8753B) connected to the
PC via a GPIB card and controlled by LabView with special-
ized user interface and interfaces to the dc motors and VNA. The
tuning algorithm is programmed in MATLAB, which is also in-
terconnected and controlled by the LabView programming en-
vironment.

III. GENERALIZED LOW-PASS PROTOTYPENETWORKS

The core of the tuning system is the prototype network shown
in Fig. 3. The basic form of this general two-port model has
been introduced in [7]. It is applicable for direct-coupled filters,
as well as for cross-coupled filters. In this paper, it is extended
such that it includes all characteristic parameters of a measured
filter such as:
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Fig. 3. Model for a general cross-coupled resonator filter.

• operating frequency ;
• frequency shift of each resonator ;
• input/output coupling resistances ;
• effects of phase shifts due to input/output coupling probes

, [5];
• coupling between resonators ;
• resonator losses .

A simple analysis shows that the vector current is governed
by the following equation (example: four-resonator filter):

(1)

The excitation vector is given by and matrix
by (2) as shown at the bottom of this page.
It follows for the vector currents .
The scattering parameters for the input and output of the pro-

totype network are given by

and

(3)

and can be found in the same way. All-parameters
are ratios of polynomials with complex coefficients, e.g.,

(4)

The coefficients are functions of the unknown parameters (ideal
case: and )

Having so characterized the model, it is now possible to find
the unknown filter parameters such that they satisfy the given
filter specifications. To do so, a mathematical filter function is

derived from the filter specifications. This mathematical model
is then used as target function and the network coefficients in
(4) are found from gradient optimization. In the following, this
process is called “filter synthesis.”

IV. FILTER SYNTHESIS

In the synthesis procedure, the coupling values and
input/output resistances are determined such that the filter spec-
ifications (insertion loss , stopband attenuation) are satisfied.
Here, we assume theideal casewhere losses and frequency
shifts are zero ( and ). An
example of a low-pass prototype filter function obtained using
the technique described in [8] is shown in Fig. 4 (solid lines,
generalized Chebyshev function, 15-dB return loss, transmis-
sion zeros 2). The corresponding ratio of polynomials is

(5)

To map the prototype function (4) onto the mathematical
function (5), the unknown coefficients of (4) must be found.
This is done by minimizing (gradient optimization) the fol-
lowing cost function:

(6)

This cost function is not very sensitive on parameter start
values and convergence of the gradient optimization is guaran-
teed. The ideal values found from the synthesis are

The response of the prototype network computed with these
parameters is also shown in Fig. 4 (dashed lines). Perfect agree-

(2)
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Fig. 4. Prototype response cross-coupled four-resonator filter.

ment with the mathematical function can be observed. The ideal
parameter values are later used as target values in the automatic
tuning algorithm. These values correspond to those of a tuned
filter.

V. PARAMETER EXTRACTION

For the measured filter (with the nonoptimum response equal
to the start values of tuning screws), the filter network model
must first be mapped onto the measured filter response. This
step produces the coefficients of the network model for the start
position of the tuning screws. The coefficients for the ideal case
are calculated from the filter specifications, as described in Sec-
tion IV. The difference between both sets of coefficients gives
a direct measure of how to tune the filter. However, before this
can be done, the sensitivity of the tuning elements must be deter-
mined. Furthermore, it must be considered that individual tuning
screws do not only affect the network element they are supposed
to tune, but also neighboring elements and, thus, have an impact
on the overall network function. Therefore, after establishing the
element sensitivities, a final optimization run must be performed
to map the network coefficients onto the prototype coefficients.

Parameter Extraction From Measured-Parameter Data

The roughly pre-tuned filter with a nonoptimum filter re-
sponse must be characterized first in terms of the prototype
model of Fig. 3. For this purpose, the generalized low-pass net-
work is optimized to meet the measured filter response. The fol-
lowing cost function is used in this first step:

(7)

is the response of the prototype network and a func-
tion of the unknown parameters. It should be noted that both
magnitude and phase or real and imaginary parts, respectively,
of the model and measured-parameters are taken into account.
Furthermore, a standard bandpass to low-pass transformation of
the measured-parameters is required since the measured filter
shows a bandpass characteristic. The influences of the coupling
probes also have to be taken into account (Fig. 1). The main ef-
fect of the probes is a phase shift of the-parameters, which

can be modeled by adding transmission lines at the input and
output of the filter (Fig. 3). The lengths of the lines are also
subject to optimization [5]. Fig. 5 shows the measured and opti-
mized prototype response of the cross-coupled four-resonator
filter (1.7-GHz center frequency, 30-MHz bandwidth). Good
agreement between the measurement and computed response
can be observed, both in the magnitude as well as in the real
and imaginary parts. The extracted parameters for the measured
response in Fig. 5 (filter was tuned by hand) are

A comparison of these parameters with the prototype values
for the ideal filter (from the above filter synthesis) clearly shows
which coupling coefficients or resonant frequencies must be
adjusted. In the above example, all resonant frequencies have
a shift in normalized frequency of about 0.3. This is also ob-
vious after inspecting the response in Fig. 5. Fig. 6 illustrates
the measured and simulated response of the de-tuned cross-cou-
pled six-resonator filter after parameter extraction. Simulated
and measured results also agree very well here.

VI. SENSITIVITY ANALYSIS

In the previous section, it was shown how prototype param-
eters of filters under test can be extracted from-parameter
measurements. It was shown that, by extracting the parameters
from a de-tuned filter response, it is immediately clear which
parameter must be adjusted and how to obtain the ideal filter
response. However, these parameters are controlled by tuning
screws and, thus, a relationship between tuning screw turns and
corresponding units of element values must be established. To
do so, the sensitivities of network parameters with respect to
tuning screws must be calculated. One parameter set is already
extracted from the response of the measured filter in the basis
position (de-tuned). Additional parameter sets are obtained if
each tuning screw is turned a defined amount and the above pro-
cedure repeated.

The sensitivities can then be calculated by finite differences.
The sensitivity of one parameter with respect to one screw is
the difference of two extracted parameter values divided by the
incremental screw turn.

The cross-coupled six-resonator filter for example can be
tuned by turning 12 tuning screws (six for changing the reso-
nant frequencies, five for changing the coupling elements, and
one for the cross coupling). Since the tuning screws exhibit a
mutual dependency (at least in their immediate neighborhood),
the optimum screw position is subject to a final optimization
run with respect to all screw positions. The mutual dependency
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(a) (b)

(c)

Fig. 5. Measured and prototype response of the cross-coupled four-resonator filter.

(a) (b)

Fig. 6. Measured and prototype response of the cross-coupled six-resonator filter (de-tuned). Dashed: measurement, solid: prototype.

of the screws is illustrated in Fig. 7. Fig. 7(a) shows the influ-
ence of screw 1 (resonance frequency of the first resonator)
on the frequency shifts of the resonators. Fig. 7(b) shows the
parameter changes (coupling coefficients) versus screw turns

for screw 1. Screw 1 mainly affects [see Fig. 7(a)], but to a
lesser extent, also [see Fig. 7(b)]. Screw 2 mainly effects

(not shown here), but to a lesser extent, alsoand
[see Fig. 7(c)].
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(a) (b)

(c)

Fig. 7. Network sensitivities (changes of parameter values (normalized) versus screw turns).

Fig. 7 also shows that the linearity of parameter changes can
be assumed in a defined tuning range. This is important for the
automatic tuning algorithm presented in Section VII.

VII. T UNING PROCEDURE

To illustrate the tuning procedure, a six-resonator bandpass
filter with cross coupling between resonator 2–5 is utilized. The
filter is roughly pretuned (basis position) using tuning screws

. The penetration depths of the screws in basis po-
sition are . The goal is to find . The recipe is outlined
in the following steps.

Step 1) Synthesize low-pass prototypeideal parameters
.

Step 2) Measure -parameters at basis posi-
tion and map them by standard bandpass to low-pass
transformation onto the normalized frequency axis

.
Step 3) Extract the parameters

from the measured filter response
at basis position ( ) by min-

imizing the cost function (7).
Step 4) Turn screw 1 a defined increment and repeat

steps 2) and 3) .
Then turn screw back to its basis position.

Step 5) Repeat step 4) for all screws.
Step 6) Calculate all network sensitivities with respect to all

screws, e.g.,

Step 7) Compare results of step 3) with step 1)calculate
all maladjustments, e.g., .

Fig. 8. Measured response of the cross-coupled six-resonator filter (tuned).

Step 8) Determine the optimal screw positions that are
necessary to tune the filter from the basis position to
the ideal prototype response by minimizing the cost
function subject to screw positions as follows:

Result of this gradient optimization: .
Fig. 8 shows the measured response of the six-resonator filter

of Fig. 6 after applying the tuning procedure described above.
The target parameter values have been synthesized for 15-dB
return loss and transmission zeros at1.5 along the normalized
frequency axis. For the bandpass to low-pass transformation, the
target 1.7-GHz center frequency and 56-MHz bandwidth have
been used.
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VIII. C ONCLUSION

An automated computer-controlled tuning technique has
been introduced. The approach described allows the extraction
of all characteristic filter parameters (e.g., frequencies of
resonators and couplings between resonators) from a measured
filter response. A comparison with element values from an ideal
prototype network, in conjunction with a sensitivity analysis
of all tuning screws, provides all information necessary to
tune the filter. The new method has been tested successfully
in a laboratory setup, using a motorized tuning unit for tuning
three-, four-, and six-resonator filters. The latter two including
one cross coupling.
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